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Abstract. Patients requiring kidney transplant may have proxy donors: people who
want to donate a kidney to the patient, but cannot due to medical incompatibility.
However, patients can swap proxy donors, so that each swapping patient ends up with
a compatible donor. Some patients, called overloaded, have multiple proxy donors. A
matching is a collection of planned transplants resulting from swaps: we consider both
balanced matchings, which restrict overloaded patients to swapping just one of their
proxy donors, and unbalanced matchings which do not. In practice, many planned
transplants get canceled, and so we want matchings to maximize the expected number
of actually executed transplants. Maximization of executed transplants introduces
perverse incentives for overloaded patients, who can increase the probability they
receive a kidney by hiding some of their proxy donors. We design the SuperGreedy
Algorithm, which provably incentivizes patients to fully reveal their proxy donors.
When cancellation probabilities are uniformly constant, we prove that SuperGreedy
O(1)-approximates the maximum number of executed transplans; we also implement
SuperGreedy and show via simulation that it performs well on realistic data.

Keywords: Kidney Exchange · Mechanism Design · Market Design.

1 Introduction

Kidney transplant is a treatment for renal disease. A living donor can donate one
kidney without long-term harm. However, even if a patient finds a willing living
donor, transplant might not be possible due to medical incompatibility. A proxy
donor d of a patient p is a person who wishes to donate a kidney to p, but is
incompatible with p; p is a proxy patient of d. While d is incompatible with p, d may
be compatible with other patients, who in turn may have their own proxy donors.
Kidney exchange programs (KEPs) allow patients to swap proxy donors, so that
each swapping patient gets a compatible donor [3].

A matching is a plan for which transplants/swaps should take place. Some pa-
tients, called overloaded, have more than one proxy donor. Currently, KEPs require

? The author would like to thank John Dickerson, Loren Gragert and Navchetan Kaur for their
insight into UNOS’ practices. The data reported here have been supplied by the United Network
for Organ Sharing as the contractor for the Organ Procurement and Transplantation Network.
The interpretation and reporting of these data are the responsibility of the author and in no way
should be seen as an official policy of or interpretation by the OPTN or the U.S. Government.
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matchings to be balanced: if a patient receives a kidney through the program, only
one of her proxy donors donate in return. However, we recently proposed utilization
of unbalanced matchings, which allow several proxy donors to donate on behalf of
a single patient, and can increase the number of transplants [8]. In this paper, we
consider both balanced and unbalanced matchings.

Planned transplants often get canceled. For example, in the KEP organized
by the United Network for Organ Sharing (UNOS), 93% of planned transplants
get canceled [6]. A transplant can get canceled for reasons involving the patient or
donor in the transplant, such as late discovery of incompatibility: we call these direct
cancellations.1 Another reason doesn’t directly involve the patient or donor in a
canceled transplant, but rather another transplant in the swap. Suppose a planned
transplant to patient p gets canceled. Then, p’s proxy donors no longer have an
incentive to donate, so transplants involving them get canceled as well. Furthermore,
if d is a proxy donor of p, and d was planned to donate to patient p, then because
the transplant from d to p gets canceled, so do transplants involving proxy donors of
p, and so on. Cancellations due to such propagation are called indirect cancellations.
We would like to find a matching which induces a large expected number of executed
transplants (transplants that actually occur, not just planned).

The matching algorithm OPT , which maximizes the expected number of exe-
cuted transplants, introduces perverse incentives. Under OPT , an overloaded patient
can increase the probability she receives a transplant by hiding some of her proxy
donors from the KEP. In contrast, a strategyproof (SP) algorithm guarantees that
each patient maximizes her probability of receiving a transplant by fully revealing
her proxy donors, thus eliminating perverse incentives. Our goal is to design a SP
matching algorithm which yields a large expected number of executed transplants.

Our main contribution is the SuperGreedy Algorithm, which we prove to be
SP. We then consider uniform markets, where direct cancellation probabilities are
constant across transplants; uniform markets have been studied by Dickerson et
al. [6], and they provide some analytic and computational tractability to a highly
complex problem. In such markets, we prove that SuperGreedy O(1)-approximates
OPT . We also implement SuperGreedy for uniform markets, and show via simulation
that it approximates OPT well in practice.

Ashlagi and Roth [3] provide a survey of kidney exchange. To the best of our
knowledge, this paper is the first to consider strategic behavior of overloaded patients
in kidney exchange with cancellations, and to consider unbalanced matchings with
cancellations. The topic of balanced matching with cancellations was first studied
by Dickerson et al. [6], leading to additional studies on the topic [4,5,10]. Strategic
behavior of transplant centers in balanced matchings without cancellations has also

1 Late discovery of incompatibility happens via a test called crossmatch, which is relatively ex-
pensive and requires mixing a patient’s blood with a potential donor’s blood, thus difficult to
perform for all possible patients and donors in advance [4].
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received significant attention [1,2,11]. Unbalanced matchings without cancellations
are considered in our own working paper [8], and in a paper by Farina et al. [7].

The paper is organized as follows. In Section 2 we define the model and discuss
some structural properties of matchings. In Section 3 we define SuperGreedy and
show that it is SP (while OPT is not); we then provide a bound on SuperGreedy’s
approximation ratio in uniform markets. In Section 4 we show how to implement
SuperGreedy and OPT in uniform markets via integer programming. In Section
5 we show that SuperGreedy approximates OPT well via simulation on realistic
data in uniform markets. In Section 6, we conclude and discuss directions for future
research. The appendix contains additional examples and results.

2 Model

For illustration of definitions, see Example 1 in this section and Example 2 in
Appendix A. A kidney exchange market is a partially weighted bipartite digraph
G = (P,D,R, T, s), with vertices P ∪ D, edges R ∪ T and function s : T ∈ (0, 1).
We drop G from the notation when it is clear from context. P and D represent
patients and donors, respectively. R and T are sets of edges from P to D and from
D to P respectively. (p, d) ∈ R iff d is a proxy donor of p, and (d, p) ∈ T iff d
is deemed medically compatible with p based on initial tests (a later discovery of
incompatibility between d and p is still possible). Each donor has at most one proxy
patient. We denote the set of altruistic2 donors—donors without a proxy patient—
as A ⊆ D. For d ∈ D − A, we denote d’s proxy patient as d∗. For each patient p,
p∗ = {d ∈ D : (p, d) ∈ R} denotes the set of p’s proxy donors; we assume |p∗| ≥ 1.
Note that d∗ is a single patient for d ∈ D−A, while p∗ is a set of donors for p ∈ P .

Let M ⊆ T . Patients and donors adjacent to an edge in M are (ex-ante) matched
by M . A donor d s.t. either d ∈ A, or d ∈ D − A and d∗ is matched by M , is (ex-
ante) satisfied by M . When we say matched or satisfied, we mean ex-ante unless
otherwise specified. We define a proxy donations cap Λmax ∈ Z≥1. Informally, M is
a matching if it describes a transplant plan (which might not be fully executed),
where (d, p) ∈M means that d donates to p. Formally, M is a matching iff:

1. If d ∈ D is matched by M , then d is satisfied by M .
2. Every donor/patient is involved in at most one transplant: for all d ∈ D, |{(d, p) ∈
M : p ∈ P}| ≤ 1, and for all p ∈ P , |{(d, p) ∈M : d ∈ D}| ≤ 1.

3. No more than Λmax proxy donors can donate on behalf of a single patient:
|{(d, p′) ∈M : d ∈ p∗, p′ ∈ P}| ≤ Λmax for all p ∈ P .

The survival probability s(d, p) is the probability that a planned transplant from d
to p is not directly canceled: for a matching M , the probability of direct cancellation
of a transplant (d, p) ∈M is 1−s(d, p), independently of all other cancellations in the
matching. When s is a constant function—that is, when all transplants have the same

2 Altruistic donors do not expect some patient to receive a kidney in return for their donation.
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direct cancellation probability–we call the market uniform. An indirect cancellation
of (d, p) ∈ M occurs if d /∈ A, and the incoming edge to d∗ in M (the transplant
involving d∗) is canceled, directly or indirectly; note that we allow a transplant to be
simultaneously directly and indirectly canceled. A non-canceled transplant in M is
executed. A patient who receives a kidney via an executed transplant in M is ex-post
matched by M : let PM be the set of patients who are ex-post matched.

In addition to transplants in M , M also induces donations to the waiting list
of patients without proxy donors. We define the number of executed transplants
induced by M to equal |A|+

∑
p∈PM min {Λmax, |p∗|}. This is equivalent to the as-

sumption that all altruistic donors, and min {Λmax, |p∗|} of the proxy donors of any
patient p ∈ PM , execute a donation (either to P or to the waiting list). Let us
justify this assumption. In practice, the waiting list’s size is very large compared
to the market.3 Therefore, any donor has many compatible patients in the waiting
list. For d ∈ A, if d is not matched by M (to a patient in P ), we instead (infor-
mally) match d to a patient in the waiting list. Similarly, for any matched p ∈ P , if
only x < min {Λmax, |p∗|} proxy donors from p∗ are matched by M , we (informally)
match min {Λmax, |p∗|} − x additional (arbitrary) donors from p∗ to patients in the
waiting list. Furthermore, when d ∈ D is matched to a patient p (either in P or
in the waiting list), and the donation from d to p gets directly but not indirectly
canceled, we can immediately find a new compatible patient to d in the waiting list
and redirect d’s donation to that patient; we repeat this until a donation from d
goes through. Therefore, if the donation from d to p doesn’t get indirectly canceled,
d will execute a donation with probability 1 (although perhaps not to p), and our
assumption is justified. Our objective is to maximize the expected number of exe-
cuted donations induced by M (to patients in P and to the waiting list), which we
denote as obj(M) = |A| + E[

∑
p∈PM min {Λmax, |p∗|}]. As the number of executed

donations from altruistic donors is a constant |A| independent of the matching, we
are also interested in the adjusted objective obj(M) = obj(M)− |A|.

2.1 Structure of Matchings

Each matching M can be uniquely extended to a generalized matching which in-
cludes the edges from patients to donors, namely M ∪ {(p, d) ∈ R : ∃p′ ∈ P, d′ ∈
D s.t. (d, p′), (d′, p) ∈M}. Consider the decomposition4 of the generalized matching
into weakly connected components; we abuse terminology and call it a decomposi-
tion of the matching. Each component is a graph we call multi-arborescence, or marb,
defined next: see Example 1 below and Example 2 in Appendix A for illustration.
An arborescence is a tree in which all edges point away from the root [9]. Informally,
a marb consists of a unique directed cycle, with arborescences growing out of excess

3 As of 5/30/2022, the number of patients in need of kidney transplant in the US is 89,950, the
vast majority of whom do not have proxy donors (see https://optn.transplant.hrsa.gov/data/).

4 The decomposition of a directed graph into weakly connected components is the decomposition
of the associated undirected graph into connected components.
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donors of overloaded patients in the cycle. Formally, a subgraph G′ of a market G
is a marb iff either it is an arborescense with an altruistic donor root or:

1. G′ contains exactly one directed cycle C = (PC , DC , TC , RC), called the center,
where PC and DC are the vertices in the cycle from P and D respectively,
while TC and RC are the edges in the cycle from T and R respectively; when
convenient, we refer to TC is the cycle.

2. Every vertex in G′ has a unique directed trail (directed walk with distinct edges)
from the center which includes all edges in the center; the trail of vertices in C
is simply all the edges in C.

We consider arborescences with an altruistic donor root as marbs with an empty
center; a single altruistic donor is itself a marb, and any altruistic donor unmatched
by M is included in the decomposition as its own marb.

Given a matching M and a matched vertex v, r(v,M) is the set of edges from
T in the trail to v from the center of its marb; |r(v,M)| is the number of edges in
that trail, which we call the distance of v (from the center of its marb) in M . When
the center is empty, that is, when the marb is an arborescence with an altruistic
donor d as a root, r(d,M) = ∅ and |r(d,M)| = 0. For unmatched v, while r(v,M)
is undefined, we extend the notation and define |r(v,M)| =∞. The size of a center
C = (PC , DC , TC , RC) is |r(v,M)| for any v ∈ PC ∪ DC , which equals |PC | =
|DC | = |TC | = |RC |. A marb with center size i is called an i-marb (i = 0 for an
empty center). Current practice caps cycle size for logistic reasons [3]: we therefore
define a cap Cmax ∈ {0} ∪ Z≥2 on the center size of each of the marbs used. When
we refer to M ⊆ T as a matching, we assume it respects Cmax.

For each edge (d, p) ∈ M , the probability e(d, p,M) that (d, p) is executed is∏
(d′,p′)∈r(p,M) s(d

′, p′); if (d, p) /∈ M , then e(d, p,M) = 0. For p ∈ P , let e(p,M) be
the probability that p is ex-post matched. If p is ex-ante matched by M , e(p,M) =∏

(d′,p′)∈r(p,M) s(d
′, p′); if p is not ex-ante matched by M , e(p,M) = 0. If C is a

directed cycle, we define e(C) = e(p, C) for (arbitrary) p ∈ PC . Our objective
function can be written as obj(M) = |A|+

∑
p∈P e(p,M) ·min {Λmax, |p∗|}.

Example 1. Consider the market shown in Figure 1a. Assume that the survival prob-
ability of each transplant edge is α. Circular vertices are patients, and rectangular
nodes are donors. Furthermore, assume Λmax ≥ 2 and Cmax ≥ 3. In Figure 1b
we show an example of a generalized matching: the (non-generalized) matching M
consists of the edges from donors to patients. The execution probability of each
transplant in M is written next to it. M consists of three marbs. The first is a
0-marb which includes transplants (d0, p1) and (d1, p2). The second is a 2-marb:
the center includes the transplants (d23, p9) and (d29, p3), and the marb also includes
(d13, p4) and (d19, p10). The third is a 3-marb: the center includes transplants (d5, p6),
(d16, p7), and (d17, p5), and the marb also includes (d27, p11) and (d26, p8). The 0-marb
induces 1 + e(p1,M) + e(p2,M) = 1 +α+α2 donations in expectation (the 1 comes
from the altruistic donor). The 2-marb induces 2e(p3,M) + 2e(p9,M) + e(p4,M) +
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(a) Market for Example 1
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(b) Matching 1 for Example 1

Fig. 1: Market and Matching for Example 1.

e(p10,M) = 2α2 + 2α2 + α3 + α3 donations in expectation (the coefficient is 2
for p3 and p9 because both have 2 proxy donors and Λmax ≥ 2). The 3-marb
induces e(p5,M) + 2e(p6,M) + min {Λmax, 3}e(p7,M) + 2e(p8,M) + e(p11,M) =
α3 + 2α3 + min {Λmax, 3}α3 + 2α4 + α4 donations in expectation. Overall, we get
1 + α+ 5α2 + (5 + min {Λmax, 3})α3 + 3α4 donations in expectation.

2.2 Mechanisms and Strategyproofness

A mechanism f is a function which maps a kidney exchange market G to a matching
f(G) on that market. We define OPT to be a mechanism that always chooses an
optimal solution (matching M on G which maximizes obj(M)). Given a mechanism

f and a market G, the approximation ratio of f on G is defined as obj(OPT (G))
obj(f(G)) (if
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obj(f(G)) = 0, defined to be∞ if obj(OPT (G)) > 0 and 1 if obj(OPT (G)) = 0). The

adjusted approximation ratio is obj(OPT (G))

obj(f(G))
. Since the adjusted approximation ratio

is at least 1, and since the approximation ratio simply adds an identical constant |A|
to the numerator and the denominator, it follows that the adjusted approximation
ratio upper bounds the approximation ratio.

Given a patient p ∈ P and a proper subset of p’s proxy donors H ⊂ p∗ s.t. H 6= ∅,
let GH be a market obtained from G by removing the donors in H and their adjacent
edges. The mechanism is strategyproof (SP) if for every market G, every overloaded
patient p in the market, and every proper subset H ⊂ p∗, e(p, f(GH))−e(p, f(G)) ≤
0. That is, p cannot benefit from reporting only p∗ −H as her proxy donors.

3 The SuperGreedy Mechanism

In this section, we introduce the SuperGreedy Mechanism, prove it is SP, and provide
an upper bound on its adjusted approximation ratio in uniform markets. OPT is not
SP (Appendix B, Theorems 3 and 4), so we look into a different class of mechanisms.
A greedy mechanism operates as follows. Beginning with an empty matching M , in
every iteration add a set of transplants FLAT (J̃) to M such that M ∪ FLAT (J̃)
is a matching, and such that all transplants in FLAT (J̃) have the same execution
probability δ; the mechanism is greedy in that it chooses FLAT (J̃) which maximizes
δ. For M ∪ FLAT (J̃) to be a matching, FLAT (J̃) must consist of transplants that
extend existing marbs in M and/or directed cycles (new marb centers) disjoint
from M and from each other. Define the following notation/conventions, then see
Algorithm 1 for pseudocode:

1. For J ⊆ 2T (where 2T is the power set of T ):

(a) FLAT (J) = ∪B∈JB: the set of edges in J .
(b) PATIENTS(J) = {p ∈ P : ∃d ∈ D s.t. (d, p) ∈ FLAT (J)}: the set of

patients involved in a transplant in J .
(c) DONORS(J) = {d ∈ D : ∃p ∈ P s.t. (d, p) ∈ FLAT (J)}: the set of donors

involved in a transplant in J .
(d) NEWSATISFIEDDONORS(J) = {d ∈ D − A : d∗ ∈ PATIENTS(J)}:

the set of donors whose proxy patient is involved in a transplant in J .

2. For Z ⊆ T :

(a) WRAP (Z) = {{x} : x ∈ Z}: “wrapping” the elements of B as subsets.
(b) DONORS(Z) = {d ∈ D : ∃p ∈ P s.t. (d, p) ∈ Z}: the set of donors involved

in a transplant in Z.

3. For a set of cycles W , define TRANSPLANTS(W ) = {TC : C ∈W} ⊆ 2T .

4. For a set B and a function f , arg maxx∈B f(x) is the set of all maximizers rather
than an arbitrary one. Also, maxx∈∅ f(x) = −∞, and arg maxx∈∅ f(x) = ∅.

5. For p ∈ P , we call p∗ the proxy pool of p. If Λmax donors from a given proxy pool
are matched by M , we say that the pool is exhausted in M .
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Algorithm 1 Greedy Mechanism Pseudocode

Input: Market G = (P,D, T,R, s), maximum cycle size Cmax, proxy donations cap Λmax

1: M ← ∅ . Current matching
2: EXH ← ∅ . Donors from exhausted proxy pools
3: X ← A(G) . Satisfied donors currently not donating to P
4: Y ← P . Currently unmatched patients
5: E ← {(d, p) ∈ T : d ∈ X, p ∈ Y } . Potential extensions to existing marbs
6: C ← All directed cycles of size 2 through Cmax

7: while E 6= ∅ or C 6= ∅ do
8: β ← max(d,p)∈E e(p,M ∪ (d, p)) . Max execution prob. of addition to existing marb
9: E′ ← WRAP (arg max(d,p)∈E e(p,M ∪ (d, p)) . Max execution prob. extension transplants

10: γ ← maxC̃∈C e(C̃) . Max execution prob. of a new cycle

11: C′ ← TRANSPLANTS(arg maxC̃∈C e(C̃)) . Max. execution prob. cycles’ transplants
12: if β > γ then
13: J ← E′

14: else if β < γ then
15: J ← C′

16: else
17: J ← E′ ∪ C′
18: end if
19: J̃ ← Some J ′ ⊆ J s.t. M ∪ FLAT (J ′) is a matching . Tie-breaking rule dependent
20: M ← M ∪ FLAT (J̃)
21: EXH ← {d ∈ D : |(d∗)∗ ∩DONORS(M)| = Λmax}
22: X ← X ∪NEWSATISFIEDDONORS(J̃)−DONORS(J̃)− EXH
23: Y ← Y − PATIENTS(J̃)
24: E ← {(d, p) ∈ T : d ∈ X, p ∈ Y }
25: C ← C − {C̃ ∈ C : PC̃ ∩ PATIENTS(J̃) 6= ∅} . Removing cycles with matched patients
26: end while
27: return M

Different greedy mechanisms differ in tie-breaking rules between multiple op-
tions for J̃ (line 19). Not all natural tie-breaking rules yield SP mechanisms: see
Theorem 5 in Appendix B. We define a tie-breaking rule that yields a SP greedy
mechanism. Specifically, in every iteration, among the candidates for J̃ , maximize
the number of added donations: define TB(J ′) =

∑
p∈PATIENTS(J ′) min {Λmax, |p∗|}

and choose J̃ ∈ arg maxJ ′⊆J :M∪FLAT (J ′) is a matching TB(J ′). Further tie-breaking is

done according to a pre-fixed arbitrary order over 2T , where we break in favor of
FLAT (J̃) larger in the order.5 We only require the pre-fixed orders we use to be
consistent, meaning that when T ′ ⊆ T , the order for 2T

′
agrees with the order for 2T .

This tie-breaking yields the SuperGreedy Mechanism S: it is not only greedy w.r.t.
maximizing δ, but also w.r.t. maximizing the number of added donations when tie-
breaking. For illustration of SuperGreedy, see Example 3 in Appendix A. Next, we
show that S is SP (we do not assume that the market is uniform for this result).

5 If we instead tie-break uniformly at random among arg maxJ′⊆J:M∪FLAT (J′) is a matching TB(J ′),
our results continue to hold, assuming we extend our definition of SP to accommodate expected
utilities under the additional randomization.
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Theorem 1. S is SP.

Proof. Let G = (P,D,R, T, s) be a market. Fix an overloaded patient p ∈ P and a
non-empty proper subset H ⊂ p∗. Let i be the iteration in which S adds a transplant
involving p to the matching (i =∞ if p is unmatched by S(G)).

Subscript k indicates the value of a variable at the end of iteration k of S (when
k = 0, it indicates the value of the variable before the first loop). The additional
subscript H indicates that S runs on GH , and its absence indicates that S runs on
G. We also define TH be the set of transplant edges in GH , and CY CLES(H) to
be the set of cycles involving a donor from H in G.

Let δ = min {β, γ}, so in particular δk = min {βk, γk} and δk,H = min {βk,H , γk,H}.
It is easily seen that δk (and δk,H) strictly decrease with k. Our proof structure is as
follows. We will show that for k < i, S operates identically on G and GH , meaning
Mk,H = Mk: in particular, this implies that S doesn’t match p before iteration i
on GH . Then, we will show that δi,H ≤ δi. Since p is matched in iteration i on G,
e(p,S(G)) = δi; since p is not matched before iteration i on GH and δk,H decreases
with k, e(p,S(GH)) ≤ δi,H ≤ δi = e(p,S(G)), proving SP.

For iteration k, define Bk and Bk,H to be the set of possibilities for J ′ on line
19 of the algorithm (on G and GH respectively), namely:

Bk = {J ′ ⊆ Jk s.t. Mk−1 ∪ FLAT (J ′) is a matching}
Bk,H = {J ′ ⊆ Jk,H s.t. Mk−1,H ∪ FLAT (J ′) is a matching}

or equivalently, we can define:

Bk = {J ′ ⊆ 2T−Mk−1 s.t. Mk−1 ∪ FLAT (J ′) is a matching and

∀p ∈ PATIENTS(J ′), e(p,Mk−1 ∪ FLAT (J ′)) = δk}
Bk,H = {J ′ ⊆ 2TH−Mk−1,H s.t. Mk−1,H ∪ FLAT (J ′) is a matching and

∀p ∈ PATIENTS(J ′), e(p,Mk−1,H ∪ FLAT (J ′)) = δk,H}.

Let k < i, assume Mk−1,H = Mk−1, and define M = Mk−1,H = Mk−1. We claim
that J̃k,H = J̃k: we will first show that J̃k is a valid candidate for J̃k,H on line
19 of S when run on GH , and then show it is the candidate chosen based on the
tie-breaking rule. Because we know that p is unmatched in Mk, and because Mk =
M ∪FLAT (J̃k), we conclude that J̃k does not include any transplants involving H.
Therefore, Mk = M ∪ FLAT (J̃k) is a matching in GH . Next, note:

1. In both markets, the transplant execution probabilities for M are the same, so
in particular adding FLAT (J̃k) to M in GH yields a per-transplant execution
probability of δk for the transplants in FLAT (J̃k). δk is the maximum per-
transplant execution probability of added transplants to M in G, and since GH is
a subgraph of G, it follows that the same is true on GH , so δk,H = δk. Therefore,
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Bk,H ⊆ Bk, and also since J̃k doesn’t contain any transplants involving H,
J̃k ∈ Bk,H . Note that the latter means that J̃k is one of the candidates J ′ for
J̃k,H on line 19 of the algorithm when run on GH .

2. Let TBW be the function TB when evaluated relatively to market W . For each
J ′ ⊆ 2TH−M where the subsets in J ′ are disjoint, if p /∈ PATIENTS(J ′),
then TBGH (J ′) = TBG(J ′), and if p ∈ PATIENTS(J ′), then TBGH (J ′) ≤
TBG(J ′). Since J̃k ∈ arg maxJ ′∈Bk TBG(J ′) and p /∈ PATIENTS(J̃k), it fol-

lows that J̃k ∈ arg maxJ ′∈Bk TBGH (J ′). Since Bk,H ⊆ Bk, it follows that J̃k ∈
arg maxJ ′∈Bk,H TBGH (J ′). Consistency yields J̃k,H = J̃k. Therefore, Mk,H =

Mk−1,H ∪ FLAT (J̃k,H) = Mk−1 ∪ FLAT (J̃k−1) = Mk.

We claim that δi,H ≤ δi. Let M = Mi−1,H = Mi−1. Because p is not yet matched
by M , then Ei−1,H = Ei−1; also, Ci−1,H = Ci−1−CY CLES(H). δi is the maximum
per-edge execution probability for Z chosen from Ei−1 and Ci−1 s.t. M ∪ Z is a
matching; δi,H is defined similarly, but with Ci−1,H ⊆ Ci−1 instead of Ci−1. As δi,H
is maximized over a smaller selection than δi, δi,H ≤ δi. ut

In uniform markets with survival probability α, execution probability is deter-
mined by the distance of a vertex in the matching: if the distance is j, the execution
probability is αj . We can use this to get a simplified pseudocode (Algorithm 2) for
S in uniform markets. Next, we prove a bound on the adjusted approximation ratio
of S in uniform markets, under the assumption that the survival probability is less
than min { 1

Λmax
, 1√

e
}. We refer the reader to Theorem 6 in Appendix B for a slightly

improved bound on the non-adjusted approximation ratio.

Algorithm 2 SuperGreedy for Uniform Markets

Input: Market G = (P,D, T,R, s), maximum cycle size Cmax, proxy donations cap Λmax

1: M ← ∅ . Current matching
2: EXH ← ∅ . Donors from exhausted proxy pools
3: X ← A(G) . Satisfied donors currently not donating to P
4: Y ← P . Currently unmatched patients
5: E ← {(d, p) ∈ T : d ∈ X, p ∈ Y } . Potential extensions to existing marbs
6: for ζ = 1 to |D| do . Distance of patients/donors to be added
7: E′ ← WRAP (E) . “Wrapping” edges as sets
8: C ← All directed cycles of size ζ involving only patients from Y
9: C′ ← {TC̃ : C̃ ∈ C} . Size ζ cycles’ transplants

10: J ← E′ ∪ C′
11: J̃ ← J ′′ ∈ arg maxJ′⊆J:M∪FLAT (J′) is a matching TB(J ′) . Further tie-breaking is pre-fixed

12: M ← M ∪ FLAT (J̃)
13: EXH ← {d ∈ D : |(d∗)∗ ∩DONORS(M)| = Λmax}
14: X ← X ∪NEWSATISFIEDDONORS(J̃)−DONORS(J̃)− EXH
15: Y ← Y − PATIENTS(J̃)
16: E ← {(d, p) ∈ T : d ∈ X, p ∈ Y }
17: end for
18: return M



Strategyproofness in Kidney Exchange with Cancellations 11

Theorem 2. Let G = (P,D, T,R, s) be a uniform market. Assume that s(d, p) =
α < min { 1

Λmax
, 1√

e
} for all (d, p) ∈ T . The adjusted approximation ratio of S on G

is upper bounded by Λmax
1−Λmaxα

max {(1 + 2α− 2α2), (1− α)(1 + Cmaxα)}.6

Proof. Throughout this proof, we refer to the implementation of S described in
Algorithm 2. Our proof structure is as follows. First, we upper bound the number
of donations induced by an i-marb. Then, we upper bound the number of i-marbs
in OPT (G) using the number of donations induced at distance up to i by S(G).
Finally, we combine those bounds to bound the adjusted approximation ratio.

First, let us upper bound the expected number of donations induced by an i-
marb. To do so, we assume that every patient in the marb is overloaded with at
least Λmax proxy donors, and that Λmax of her proxy donors are matched; we call
such marb maximal. Of course, this would mean that the marb matches an infinite
number of patients/donors, but that is OK—we are calculating an upper bound.

We calculate the expected number of donations induced by a maximal i-marb. A
maximal 0-marb has Λj−1max patients at each distance j ∈ {1, 2, 3, . . .}, each of which
provides Λmax proxy donors. Therefore, we get

∑∞
j=1 Λ

j−1
maxΛmaxα

j =
∑∞

j=1 Λ
j
maxαj =

Λmaxα
1−Λmaxα

non-altruistic donations in expectation. For i ≥ 2, a maximal i-marb has

i patients matched at distance i, and Λj−1max(Λmax − 1)i at distance i + j for j ∈
{1, 2, 3, . . .}.7 Each matched patient provides Λmax proxy donors, so we get iΛmax

donations induced at distance i, and i(Λmax − 1)Λjmax at distance i + j for j ∈
{1, 2, 3, . . .}. Overall, we get the expected number of donations:

iΛmaxα
i + i(Λmax − 1)

∞∑
j=1

Λjmaxα
i+j = iΛmaxα

i + i(Λmax − 1)αi
∞∑
j=1

Λjmaxα
j =

iΛmaxα
i + i(Λmax − 1)αi · Λmaxα

1− Λmaxα
= iαiΛmax

1− α
1− Λmaxα

.

For i ≥ 1, let PMi = {p ∈ P : |r(p,M)| = i} be the set of patients matched
at distance i by matching M . Let βi =

∑
p∈P S(G)

i

min {Λmax, |p∗|} be the number of

induced donations at distance i in S(G) (including waiting list donations). Let N0 be
the number of 0-marbs in OPT (G) with non-altruistic donations (have at least one
edge included), and let Ni be the number of i-marbs in OPT (G) for i = 2, . . . , Cmax.

First, we boundN0. Since every 0-marb inducing non-altruistic donations matches
exactly one patient at distance 1, the number of such marbs in a matching equals
the number of patients matched at distance 1 in that matching. Therefore, N0 =

|POPT (G)
1 |. By Lemma 1 in Appendix B, S maximizes the number of patients matched

at distance 1, so |POPT (G)
1 | ≤ |P S(G)

1 |. Therefore, N0 ≤ |P S(G)
1 |.8

6 If Cmax = 0, then our analysis can actually yield an improved bound of Λmax
1−Λmaxα

.
7 The reason for the minus one is that each patient at level i “wastes” one donor on the cycle.
8 We can also prove this theorem without Lemma 1, by relying on the fact that |POPT (G)

1 | is upper
bounded by the number of donations induced at distance 1 in OPT (G), which is upper bounded
by β1. However, that would complicate the proof of Theorem 6 in Appendix B.
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Next, we bound Ni for i ≥ 2. Let Ci be the set of centers of i-marbs in OPT (G).
We partition Ci into two sets. The first is the set of cycles in Ci which include
no patients matched at distance less than i under S(G): Cai = {C ∈ Ci : ∀p ∈
PC , |r(p,S(G))| ≥ i}. The second includes the remaining cycles in Ci: Cui = {C ∈
Ci : ∃p ∈ PC s.t. |r(p,S(G))| < i}. Cai includes the cycles from OPT (G) that are
available for S to add in iteration i, and Cui includes those that aren’t.

All cycles in Cai are available for S in iteration i, and since they are all used in
OPT (G), they are disjoint. Thus, in iteration i, the collection of all cycles in Cai is an
available choice in line 11 of Algorithm 2, which yields i|Cai | donations at distance i.
Therefore, S induces at least i|Cai | donations at distance i. It follows that i|Cai | ≤ βi.

Next, let j ∈ {2, . . . , Cmax}. We bound
∑j

i=2 |Cui |. The cycles in ∪ji=2Cui are
disjoint, since they are all part of OPT (G); also, trivially, Cuz ∩Cuw = ∅ for all z 6= w.

By definition, for every cycle C ∈ Cui , there exists a patient p ∈ ∪i−1k=1P
S(G)
k s.t.

p ∈ PC . Since all cycles in ∪ji=2Cui are disjoint, this defines a one-to-one mapping

from ∪ji=2Cui to ∪j−1k=1P
S(G)
k , which implies that

∑j
i=2 |Cui | ≤

∑j−1
k=1 |P

S(G)
k |.

Now let us bound the adjusted approximation ratio. When we replace the number
of induced donations from each marb in OPT (G) by the maximal marb upper bound
we obtained, we get the following upper bound on obj(OPT (G)):

obj(OPT (G)) ≤ Λmaxα

1− Λmaxα
N0 +

Cmax∑
i=2

iαiΛmax
1− α

1− Λmaxα
Ni

=
Λmaxα

1− Λmaxα
N0 +

Cmax∑
i=2

iαiΛmax
1− α

1− Λmaxα
(|Cai |+ |Cui |)

We have shown
∑j

i=2 |Cui | ≤
∑j−1

k=1 |P
S(G)
k | for all j ∈ {2, . . . , Cmax}. In our bound,

the coefficient of |Cui | is greater than the coefficient of |Cui′ | for 2 ≤ i < i′: the
derivative of xαx w.r.t. x is αx(x logα+1), which is negative whenever x logα+1 < 0,
and since α < 1√

e
, we get that for all x ≥ 2, x logα+ 1 < 2 log 1√

e
+ 1 = 0. A simple

inductive argument shows that replacing |Cui | with |P S(G)
i−1 | for all i ∈ {2, . . . , Cmax}

maximizes our bound. Since we also have |Cai | ≤ 1
i βi and N0 ≤ |P S(G)

1 |, we get:

obj(OPT (G)) ≤ Λmaxα

1− Λmaxα
|P S(G)

1 |+
Cmax∑
i=2

iαiΛmax
1− α

1− Λmaxα
(
βi
i

+ |P S(G)
i−1 |)

=
Λmaxα

1− Λmaxα
|P S(G)

1 |+
Cmax∑
i=2

αiΛmax
1− α

1− Λmaxα
(βi + i|P S(G)

i−1 |).
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Now, trivially, |P S(G)
i | ≤ βi, and we use that to get the bound:

obj(OPT (G)) ≤ Λmaxα

1− Λmaxα
β1 +

Cmax∑
i=2

αiΛmax
1− α

1− Λmaxα
(βi + iβi−1)

= (
Λmaxα

1− Λmaxα
+ 2α2Λmax

1− α
1− Λmaxα

)β1 + αCmaxΛmax
1− α

1− Λmaxα
βCmax

+

Cmax−1∑
i=2

Λmax
1− α

1− Λmaxα
(αi + (i+ 1)αi+1)βi.

Donations induced at distance at most Cmax give obj(S(G)) ≥
∑Cmax

i=1 αiβi. The ad-
justed approximation ratio is bounded from above by the ratio between our bounds
for obj(OPT (G)) and obj(S(G)). The coefficient ratio of βi in this expression is:

1. For i = 1, Λmax
1−Λmaxα

+ 2αΛmax
1−α

1−Λmaxα

2. For 1 < i < Cmax, Λmax
1−α

1−Λmaxα
(1 + (i+ 1)α)

3. For i = Cmax, Λmax
1−α

1−Λmaxα

The numerator and the denominator are sums of positive terms, so the expression
is bounded from above by the largest coefficient ratio, which is either the ratio for
β1 or for βCmax−1. Therefore, the adjusted approximation ratio is bounded by:

max { Λmax

1− Λmaxα
+ 2αΛmax

1− α
1− Λmaxα

,Λmax
1− α

1− Λmaxα
(1 + Cmaxα)},

and factoring out Λmax
1−Λmaxα

completes our proof. ut

Our bound becomes tighter as α decreases. To get a sense of the bound, we note
that UNOS’ policy requires Cmax = 3, and that Dickerson et al. [6] estimate an upper
bound of 0.3 on α. Using Cmax = 3 and α = 0.3, for balanced matchings (Λmax = 1)
the bound we get is approximately 2.03, and for Λmax = 2 the bound is approxi-
mately 7.1. We note that Λmax = 2 is pretty close to having unbalanced matchings
without a proxy donations cap: based on the markets we used in our simulation in
Section 5, on average approximately only 0.23% of all patients, and 4.14% of all
overloaded patients have more than 2 proxy donors. So we have managed to get a
constant bound, albeit with a fairly large constant for unbalanced matchings. Nev-
ertheless, it is a worst-case bound, and furthermore, it is accomplished under very
“aggressive” estimates even for a worst-case bound: our proof essentially assumes
an infinite supply of overloaded patients for OPT , whereas in reality the number
of patients is finite, and only a small fraction of them is overloaded. Also, as we
mentioned, Dickerson et al.’s estimate of 0.3 is an upper bound on what α really is,
and our bound improves as α gets smaller: for α = 0.2, the bounds become 1.65 for
Λmax = 1 and 4.4 for Λmax = 2, and for α = 0.1 they become 1.31 for Λmax = 1 and
2.95 for Λmax = 2. Therefore, one could hope that on real data S performs better
than our calculated bounds, and as we see in Section 5, it does indeed.
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4 Implementation

In this section, we implement OPT and S for uniform markets with small values
of Cmax (in reality, Cmax = 3). Define a parameter Lmax specifying the maximum
distance allowed in a matching. Imposing9 Lmax in S is easily seen to preserve SP.
The decrease in objective function value from when Lmax =∞ to when Lmax = l is
bounded by |D|αl+1, which is negligible for even fairly small l. For each a ∈ P∪D, let
z(a) be the set of donors/patients compatible with a. Let Ci be the set of all directed
cycles of size i in the market, and for p ∈ P , define ci(p) ⊆ Ci be the set of directed
cycles of size i involving patient p. Let P = {p1, . . . , p|P |} and D = {d1, . . . , d|D|}.
Our integer program (IP) uses the following binary variables: pi,l for each pi ∈ P
and l ∈ {1, . . . , Lmax}; di,j,l for each di ∈ D, pj ∈ z(di), and either l = 0 if di ∈ A
or l ∈ {1, . . . , Lmax} if di /∈ A; and xr ∈ {0, 1} for each directed cycle r ∈ ∪Cmax

i=2 Ci.
pi,l = 1 iff pi is matched at distance l; di,j,l = 1 iff di is matched at distance l and
donates to pj ; and xr = 1 iff the matching uses cycle r. Consider the IP (

∑
l means

sum over l for which the variables are defined):

maximize
p, d

f(p) (1a)

subject to
∑

dj∈z(pi)

dj,i,l−1 ≥ pi,l pi ∈ P, l = 1 or l > Cmax, (1b)

∑
dj∈z(pi)

dj,i,l−1 +
∑

r∈cl(pi)

xr ≥ pi,l pi ∈ P, 2 ≤ l ≤ Cmax, (1c)

∑
l

∑
dj∈z(pi)

dj,i,l ≤ 1 pi ∈ P, (1d)

∑
pj∈z(di)

di,j,l ≤ pk,l di ∈ D −A, pk = d∗i , l ≥ 1, (1e)

∑
l

pi,l ≤ 1 pi ∈ P, (1f)∑
l

∑
pj∈z(di)

di,j,l ≤ 1 di ∈ D, (1g)

∑
r∈∪j≤Cmaxcj(pi)

xr ≤ 1 pi ∈ P, (1h)

∑
(di,pj)∈Tr

(di,j,|Tr| + pj,|Tr|) ≥ 2|Tr|xr r ∈ ∪Cmax
k=2 Ck, (1i)

∑
dj∈p∗i ,pj′∈z(dj)

dj,j′,l ≤ Λmax pi ∈ P, l ≥ 1 (1j)

The constraints capture exactly all possible matchings. Let us explain them:

9 In Algorithm 1, stop when η > αLmax ; in Algorithm 2, run the loop up to Lmax instead of |D|.
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1b: When no size l cycles are allowed, either because they violate Cmax or because
l = 1 (there are no cycles of size 1), pi is matched at distance l iff she receives a
donation from a donor dj matched at distance l − 1.

1c: When size l cycles are allowed, pi is matched at distance l iff either she receives
a donation from a donor dj matched at distance l − 1, or she receives it via a
cycle of size l.

1d: Each patient receives at most one donation.
1e: di ∈ D−A can donate a kidney while matched at distance l only if d∗i is matched

at distance l.
1f: Each patient can only be matched at a single distance.
1g: Each donor can only be matched at a single distance, and each donor can donate

to at most one patient.
1h: No patient can be used in more than one cycle.
1i: Recall that for a cycle r, Tr is the set of transplants in the cycle. For cycle r

to be used, the donations in the cycle must occur at distance |Tr|—that is, all
donations in the cycle must be used, and the donors/patients must be matched
at distance |Tr|. The coefficient on the r.h.s. is 2|Tr| because that is the number
of variables in the l.h.s. in total.

1j: No more than Λmax proxy donors can donate on behalf of a single patient.

For Cmax = 3, all directed cycles of size up to Cmax can be generated via brute force
in O(|D|) time (as there are

(|D|
i

)
such cycles for i = 2, 3). Generating the cycles

took less than 3 hours per market in our simulation on a consumer PC.

Our IP can compute OPT and S. f(p) =
∑Lmax

l=1

∑|P |
i=1 α

l min {Λmax, |p∗i |}pi,l
yields OPT , as this is obj.10 For S, the objective function involves very large co-
efficients, making feeding the IP directly into a solver impractical. The difficulty,
surprisingly, is not in implementing the main part of the tie-breaking rule, but
rather the secondary part, which breaks further ties according to some pre-specified
ordering over 2T . Nevertheless, we can solve the IP iteratively, if we use an
appropriate ordering: we show the iterative solution method in Appendix C.

Let � be some ordering on T . The extension of � to an ordering �∗ over 2T is
done as follows: for any two distinct sets B,B′ ∈ 2T , B �∗ B′ iff either B′ ⊂ B,
or B′ 6⊂ B, B 6⊂ B′, and arg maxB−B′ (�) � arg maxB′−B (�).11 This is equivalent
to going through the edges in T in decreasing order of �, stopping at the first edge
(d, p) that is in exactly one of the two sets, and choosing the set that contains it
to be the larger one. Let µ(di, pj) = k − 1 iff (di, pj) is the k-th largest edge in T
according to �. We set a big-M value β = |D|+ 2|T |, and define

f(p) =

Lmax∑
l=1

|P |∑
i=1

β2Lmax−2l+1 min {Λmax, |p∗i |}pi,l +

Lmax∑
l=1

∑
(di,pj)∈T

2µ(di,pj)β2Lmax−2ldi,j,l

10 Since obj differs from obj by a constant, it does not matter for optimization.
11 Since the element maximizing � is unique, we slightly change our earlier convention and consider

arg max to be a specific element in this case instead of a set of elements.
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Informally speaking, the first term is used for maximizing donations and the second
term is used for tie-breaking. Our choice of β is large enough so that βj+1 > φβj

for any number φ that will come up in our analysis. Therefore the algorithm max-
imizes the coefficients of βj in decreasing order from j = 2Lmax − 1 to j = 0,
meaning that for every j, we maximize the coefficients of βj subject to maximiz-
ing the coefficients of βj+1, subject to maximizing the coefficients of βj+2, and
so on until β2Lmax−1. For odd powers β2Lmax−1, β2Lmax−3, . . . , β1 the coefficient of

β2Lmax−2l+1 is
∑|P |

i=1 min {Λmax, |p∗i |}pi,l, which is the number of donations induced at
distance l. For even powers β2Lmax−2, β2Lmax−4, . . . , β0, the coefficient of β2Lmax−2l

is
∑

(di,pj)∈T 2µ(di,pj)di,j,l. Note that for all w ∈ Z≥1, 2w = 1 +
∑w−1

k=0 2k. There-

fore, the coefficient of β2Lmax−2l breaks ties (between edges added at distance l)
according to �∗.12 Note that tie-breaking at distance l is favored over donation
maximization at distances l + 1, . . . , Lmax, as S requires. Unfortuantely, a commer-
cial solver fails to handle relatively small powers of β, since this method requires

that β > |D|+
∑|T |

i=1 2i−1 = |D|+ 2|T | − 1. Nevertheless, as mentioned, we show in
Appendix C how to solve this IP iteratively for an appropriate choice of �.

5 Simulation

We simulate S and OPT on real markets from UNOS, under the assumption that
the markets are uniform. Our data contains 519 real markets on which UNOS con-
ducted matchings, from October 2010 to May 2019. For increased independence,
we sampled 52 equidistant13 markets. Basic statistics regarding our 52 markets are
provided in Table 1. While the data does not contain comprehensive information
about cancellations, we simulate each algorithm for constant survival probability of
α = 0.1, 0.2, 0.3. Dickerson et al. [6] estimate an upper bound of 0.3 on the survival
probability. We set Lmax = 12: our largest market contains 301 donors, so the ob-
jective function value difference from Lmax =∞ is bounded by 301 ·0.313 ≤ 0.00005.

Our simulation results14 for the adjusted objective are shown in Table 2, and
Figure 2 gives additional detail; we report similar results for the non-adjusted objec-
tive in Appendix D. When α = 0.3, the average adjusted approximation ratio ranges
from 1.142 for balanced matchings to 1.036 for unrestricted unbalanced matchings
(Λmax = 4, which is unrestricted since no overloaded patient in the data has more
than 4 proxy donors). Like our theoretical bounds, the simulated performance of
S improves as α decreases. However, unlike our theoretical bounds, the simulated
performance of S improves as Λmax increases. The latter discrepancy is not surpris-

12 Let (di′ , pj′) ∈ T , and let B = {(d, p) ∈ T : (di′ , pj′) � (d, p)}. Setting di′,j′,l = 1 and di′′,j′′,l = 0
for all (di′′ , pj′′) ∈ B increases

∑
(di,pj)∈T 2µ(di,pj)di,j,l strictly more than setting di′,j′,l = 0 and

di′′,j′′,l = 1 for all (di′′ , pj′′) ∈ B.
13 Distance defined as the number of additional match runs conducted in between the two runs.
14 Note that columns 1-4 in Table 2 cannot be derived from dividing columns 9-12 by 5-8 respec-

tively, as the adjusted approximation ratio is calculated before taking the mean.
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patients # donors # overloaded % altruistic % compatible %

213.48 (40.28) 227.86 (43.33) 5.14% (0.98) 0.85% (0.9) 10.51% (1.27)

Table 1: Basic statistics of our sampled UNOS data. There are 52 markets in
our data. We specify the mean (and standard deviation in parenthesis) of each
characteristic over all markets. The following characteristics are considered, in order
from left to right: number of patients; number of donors; percentage of patients who
are overloaded; percentage of donors who are altruistic; percentage of donor-patient
pairs who are compatible (out of all donor-patient pairs, proxies not excluded).

adjusted approx. ratio obj(S(G)) obj(OPT (G))

α
Λmax

1 2 3 4 1 2 3 4 1 2 3 4

0.1 1.137 1.028 1.02 1.016 0.375 0.417 0.42 0.422 0.425 0.429 0.429 0.429

0.2 1.138 1.038 1.03 1.026 1.185 1.322 1.334 1.34 1.35 1.373 1.375 1.376

0.3 1.142 1.047 1.04 1.036 2.448 2.75 2.776 2.79 2.801 2.878 2.885 2.887

Table 2: Mean simulation results for S. The mean is taken over all 52 markets.

Fig. 2: Box plot for the adjusted approximation ratio of S, showing quartiles q1-q3.
Empty circles are outliers (points outside [q1 − 1.5(q3 − q1), q3 + 1.5(q3 − q1)]).

ing, as our theoretical bounds were derived using an infinite supply of overloaded
patients with Λmax proxy donors, but in the data there are few such patients.
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6 Conclusion and Future Directions

In this paper, we have shown (Theorems 3 and 4 in Appendix B) that transplant
cancellations can cause perverse incentives: overloaded patients might increase their
chance of being matched by hiding some of their proxy donors. These incentives
exist in both balanced and unbalanced matchings. We designed the SuperGreedy
matching algorithm, which provably eliminates perverse incentives. We analyti-
cally bounded SuperGreedy’s adjusted approximation ratio on uniform markets, and
showed via simulation that SuperGreedy performs much better than those bounds
in practice. In the process, we implemented SuperGreedy for uniform markets.

There are several questions stemming from our work. There is a significant gap
between our analytic bounds and the real-world performance (in terms of expected
donations) of SuperGreedy on uniform markets: it would be useful to get tighter
analytic bounds to bridge this gap. Also, while SuperGreedy is SP in all markets, we
do not have analytic or simulated results regarding its performance in non-uniform
markets, which would be an important extension of our work. Finally, it would be
interesting to extend our model to include additional edge weights representing the
quality of the transplant (in terms of predicted graft survival).
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Appendix A Examples

In this appendix, we provide examples to illustrate some of our definitions.

Example 2. Consider the market shown in Figure 1a. Assume that the survival prob-
ability of each transplant edge is α. Circular vertices are patients, and rectangular
nodes are donors. In Figures 3a, 3b and 3c we show examples of generalized match-
ings: the (non-generalized) matchings consist of just the edges from donors to pa-
tients. The execution probability of each transplant in the matching is shown next
to it.

1. The graph in 3a is a (generalized) matching for all Λmax ≥ 1, Cmax ≥ 3. It consists
of three marbs: the 0-marb which includes transplants (d0, p1) and (d1, p2), the
2-marb which includes transplants (d23, p9) and (d29, p3), and the 3-marb which
includes transplants (d5, p6), (d16, p7) and (d17, p5). Both the 2-marb and the 3-
marb consist of only their center and nothing else. The 0-marb induces 1 + α+
α2 donations in expectation; the 2-marb induces 2 min {Λmax, 2}α2 since both
patients have two proxy proxy donors; the 3-marb induces (1 + min {Λmax, 2}+
min {Λmax, 3})α3 since p5, p6 and p7 have 1, 2 and 3 proxy donors respectively.
Overall, 1 +α+ (1 + 2 min {Λmax, 2})α2 + (1 + min {Λmax, 2}+ min {Λmax, 3})α3

donations are induced in expectation.
2. The graph in 3b is a (generalized) matching for all Λmax ≥ 2, Cmax ≥ 2. It

consists of three marbs. The first is a 0-marb which includes transplants (d0, p1)
and (d1, p2). The second is a 2-marb : the center includes transplants (d5, p6) and
(d16, p5), and the marb also includes (d26, p8). The third is also a 2-marb: the center
includes transplants (d23, p9) and (d29, p3), and the marb also includes (d13, p4) and
(d19, p10). The first marb induces 1 +α+α2 donations in expectation; the second
marb induces α2+2α2+2α3 donations (first, second and third terms correspond
to p5, p6 and p8 respectively); and the third marb induces 2 ·2α2+2α3 donations
(the first term corresponds to p3 and p9, and the second one corresponds to p4
and p10). Overall, 1 + α+ 8α2 + 4α3 donations are induced in expectation.

3. The graph in 3c is a (generalized) matching for all Λmax ≥ 2, Cmax ≥ 3. It
consists of two marbs. The first is a 0-marb which includes transplants (d0, p2),
(d2, p3), (d13, p4) and (d23, p13). The second is a 3-marb: the center includes trans-
plants (d5, p6), (d16, p7), and (d17, p5), and the marb also includes (d27, p11), (d26, p8),
(d18, p9), (d19, p10), and (d29, p12). The 0-marb induces 1+α+2α2+α3+α3 donations
in expectation, while the 3-marb induces α3+2α3+min {Λmax, 3}α3+2α4+2α5+
α6+α6 donations. Overall, 1+α+2α2+(5+min {Λmax, 3})α3+2α4+2α5+2α6

donations are induced in expectation.

Example 3. Consider the market shown in Figure 4. Assume Λmax ≥ 2, and note
that the largest number of proxy donors per patient in the market is 2, hence Λmax

plays no role. We will trace S for two examples: the first is when the market is
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Fig. 3: Matchings for Example 2.
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Fig. 4: Market for Theorem 3.

non-uniform, and the second when the market is uniform. In our first example, tie-
breaking happens to not be relevant—that is, S and every other greedy mechanism
will output the same matching. In the second one, tie-breaking does play a role. So
first, assume that the survival probability of each edge is as specified next to the
edge; furthermore, assume 0 < L < H < 1 and L < H3. We trace the operation
of S, beginning with an empty matching: the matching at the end of iteration i is
denoted as Mi.

1. In the first iteration, the highest execution probability for a marb extension is
H, obtained uniquely by adding (d0, p2). The highest execution probability for a
cycle is H3, obtained uniquely by the cycle p6 → d6 → p7 → d17 → p8 → d8 → p6.
Therefore, M1 = {(d0, p2)}.

2. In the second iteration, there are no possible extensions to the 0-marb, and the
highest execution probability cycle remains the same as in the first iteration.
Therefore, we add a new marb center: the cycle p6 → d6 → p7 → d17 → p8 →
d8 → p6, namely M2 = M1 ∪ {(d6, p7), (d17, p8), (d8, p6)}.

3. In the third iteration, the only possible marb extension is adding (d27, p4) to the
3-marb with execution probability H3L. There is also one cycle left without any
matched patients, namely p3 → d3 → p4 → d14 → p3, with execution probability
HL. As HL > H3L, the cycle is added and we get M3 = M2∪{(d3, p4), (d14, p3)}.

4. In the fourth iteration, there are no more possible cycles to add. The only possible
marb extension is adding (d24, p5) to the 2-marb with execution probability HL2:
therefore, M4 = M3 ∪ {(d24, p5)}.
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5. At the end of the fourth iteration, there is no way to extend any marb or
add any cycle. Therefore the algorithm ends and the final ouptut is M4 =
{(d0, p2), (d6, p7), (d17, p8), (d8, p6), (d3, p4), (d14, p3), (d24, p5)}.

For the second example, ignore the survival probabilities in the figure and assume
instead that the survival probability of each transplant edge is α. In that case:

1. In the first iteration, there are two transplants that can be added with execution
probability α to the 0-marb containing d0: (d0, p1) and (d0, p2). These are the
only candidates, since there are no cycles with execution probability less than or
equal to α. We cannot add both of these edges, since d0 can only donate to one
candidate. Since |p∗1| > |p∗2|, S adds (d0, p1) to the matching, and M1 = {(d0, p1)}.

2. In the second iteration, the existing 0-marb can be extended by transplants
(d11, p6) and (d21, p3), each with resulting execution probability α2. The cycle
p3 → d3 → p4 → d14 → p3 can also be added with execution probability α2.
(d11, p6) does not overlap with the other extension edge or the cycle, and therefore
will be added. On the other hand, adding (d21, p3) only matches p3 and therefore
adds |p∗3| = 1 donations, while adding the cycle matches |p∗3|+|p∗4| = 3 donations,
so we add the cycle. Overall, M2 = M1 ∪ {(d11, p6), (d3, p4), (d14, p3)}.

3. In the third iteration, we can extend the 0-marb by adding (d6, p7) with execution
probability α3, and similarly we can extend the 2-marb by adding (d24, p5), and
that’s it. Since the two transplants are vertex disjoint, we can add both of them
and get M3 = M2 ∪ {(d6, p7), (d24, p5)}.

4. In the fourth iteration, the only extension possible is by adding (d17, p8) to the
0-marb: M4 = M3 ∪ {(d17, p8)}.

5. At the end of the fourth iteration, there is no way to extend any marb or
add any cycle. Therefore the algorithm ends and the final ouptut is M4 =
{(d0, p1), (d11, p6), (d3, p4), (d14, p3), (d6, p7), (d24, p5), (d17, p8)}.

Appendix B Additional Results

In this appendix, we provide additional results.

Theorem 3. OPT is not SP.

Proof. Consider market G in Figure 5, where the survival probability of each edge is
written next to it. We assume that α >> ε > 0.OPT (G) = {(d0, p1), (d1, p2), (d̃0, p3)},
and also OPT (G{d1}) = {(d̃0, p1), (d0, p2)}. However, e(p1, OPT (G)) = α while
e(p1, OPT (G{d1})) = α+ ε, violating SP. ut

Theorem 4. OPT is not SP, even in uniform markets.

Proof. We give two examples.



Strategyproofness in Kidney Exchange with Cancellations 23

d0

d̃0

p1 d̃1 d1 p2 d2

p3 d3

α

α+ ε

α

α

α

Fig. 5: Market for the proof of Theorem 3

d0 p1 d1 · · · pk−1

dk−1

d̃k−1

pkdk

pk+1dk+1· · ·p2k−1

d2k−1

d̃2k−1

p2k d2k

(a)

d0 p1 d1
1

p2 d1
2

d2
1 d3

1 d2
2

p3 d3 p4 d4

(b)

Fig. 6: Markets for the proof of Theorem 4



24 I. Feigenbaum

1. First, assume Cmax ≥ k for some k ≥ 2. Consider a market G = (P,D,R, T, s),
shown on Figure 6a, where s(d, p) = α ∈ ( 1k , 1) for all (d, p) ∈ T , and P =

{p1, . . . , p2k}. For i ∈ {k−1, 2k−1}, p∗i = {di, d̃i}, and for all other i, p∗i = {di};
there is also one altruistic donor d0. The edges in T consist of (di, pi+1) for
i ∈ {1, . . . , k−1}∪{k+1, . . . , 2k−1}, (dk, p1), (d2k, pk+1), (d0, p1) and (d0, pk+1).
Essentially, this market consists of two directed cycles C1 = p1 → d1 → p2 →
d2 → · · · → dk → p1 and C2 = pk+1 → dk+1 → pk+2 → dk+2 → · · · →
d2k → pk+1, an extra proxy donor for pk−1 and p2k−1, and an altruistic donor
compatible with p1 and pk+1.
Assume WLOG that OPT (G) consists of all edges in T except (d0, p1) and
(d2k, pk+1): in other words, it consists of the transplants in C1 as well as the
chain (di, pi+1) for i ∈ {k+ 1, . . . , 2k−1}. Then, e(pk−1, OPT (G)) = αk. On the
other hand, consider G{dk−1}: in this market, if d0 donates to pk+1, the objective
would be maximized by using the chain (di, pi+1) for i ∈ {k + 1, . . . , 2k − 1}
(and nothing else), which would yield αk−11(Λmax ≥ 2) +

∑k
i=0 α

i donations
in expectation (1(Λmax ≥ 2) is an indicator variable, the first term comes from
the extra donation from d̃2k−1). On the other hand, if d0 donates to p1, then
objective maximization is achieved by using C2 and the chain (di, pi+1) for i ∈
{1, . . . , k−2}, which yields

∑k−1
i=0 α

i+(k+1(Λmax ≥ 2))αk expected transplants,
where the first term comes from the chain, and the second term comes from
C2. Therefore, OPT (G{dk−1}) consists of the latter solution (C2 and the chain

(di, pi+1) for i ∈ {1, . . . , k−1}) if
∑k−1

i=0 α
i+(k+1(Λmax ≥ 2))αk > αk−11(Λmax ≥

2)+
∑k

i=0 α
i, or equivalently (k−1+1(Λmax ≥ 2))αk > αk−11(Λmax ≥ 2), which

is satisfied when α > 1
k if Λmax ≥ 2 (and for all α ∈ (0, 1) if Λmax = 1). In that

case, e(pk−1, OPT (G{dk−1})) = αk−1 < αk = e(pk−1, OPT (G)), violating SP.
2. Assume instead that Cmax = 1, meaning that no cycles are allowed, and Λmax ≥

3. Consider a market G = (P,D,R, T, s), shown on Figure 6b, where s(d, p) =
1−ε for all (d, p) ∈ T for some very small ε > 0. For a small enough ε, OPT (G) =
{(d0, p3), (d3, p4), (d4, p2), (d22, p1)} whileOPT (G{d22}) = {(d0, p1), (d11, p2)}. How-

ever, e(p2, OPT (G)) = (1−ε)3 while e(p2, OPT (G{d22})) = (1−ε)2, which violates
SP. ut

Theorem 5. Consider the greedy mechanism BADTB which tie-breaks so that the
final objective function value is as large as possible (meaning, obj(BADTB(G)) ≥
obj(M) for all matchings M that can be obtained by greedy mechanisms on G).
BADTB is not SP.

Proof. We give two examples of BADTB failing SP. The key observation in both
of them is that if an optimal solution can be built greedily, then BADTB would
output that optimal solution.

1. The proof of Theorem 4 on the market from Figure 6a works for BADTB since
in both G and Gdk−1

the optimal solution can be generated greedily.
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Fig. 7: Market for Theorem 5

2. Consider the market G shown in Figure 7, where for every i = 1, . . . , n, there
exist patients pi and p′i, as well as their respective proxy donors di and d′i. In
addition, there are three additional donors: an altruistic donor d0, a proxy donor
d̃2 ∈ p∗2 and a proxy donor d̃n ∈ p∗n. For every 1 ≤ i ≤ n − 1, di is compatible
with pi+1 and d′i is compatible with p′i+1. In addition, d0 is compatible with

p1 and p′1, and d̃n is compatible with p1. Assume s(d, p) = 1 − ε for all dona-
tions in the market, where ε > 0 is very small, and assume n > Cmax. Denote
BOTTOM = {(d′i, p′i+1) : i = 1, . . . , n−1}, TOP = {(di, pi+1) : i = 1, . . . , n−2}.
Using the fact that the optimal solutions in both G and G{d̃n} are unique and

can be generated greedily, BADTB(G) = {(d0, p′1)} ∪BOTTOM ∪ {(d′n, pn)} ∪
{(d̃n, p1)} ∪ TOP , and BADTB(G{d̃n}) = {(d0, p1)} ∪ TOP ∪ {(dn−1, pn}. How-

ever, e(pn, BADTB(G)) = (1 − ε)n+1 and e(pn, BADTB(G{d̃n})) = (1 − ε)n,
violating SP. ut

Lemma 1. Let G = (P,D, T,R, s) be a uniform market. Assume that s(d, p) = α <
min { 1

Λmax
, 1√

e
} for all (d, p) ∈ T . Let PM1 = {p ∈ P : |r(p,M)| = 1} be the set of

patients matched at distance 1 for any matching M . Then, |P S(G)
1 | ≥ |PM1 | for all

matchings M in G.

Proof. For a matching M , define MA = {(d, p) ∈M : d ∈ A}. Let M̃ be a matching

where |P M̃1 | > |P
S(G)
1 |. Let {(d1, p1), . . . , (dk, pk)} = S(G)A (if the set is empty then

k = 0). Then, define M0 = M̃A, and get Mi from Mi−1 as follows:

1. If di and pi are both unmatched by Mi−1, Mi = Mi−1 ∪ {(di, pi)}.
2. If di and pi are both matched by Mi−1, Mi = Mi−1.
3. If di is matched by Mi−1 to p ∈ P and pi is unmatched by Mi−1, Mi = Mi−1 ∪
{(di, pi)} − {(di, p)}.

4. If pi is matched by Mi−1 to d ∈ A and di is unmatched by Mi−1, Mi = Mi−1 ∪
{(di, pi)} − {(d, pi)}.
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When going from Mi−1 to Mi, we remove at most one transplant involving an
altruistic donor from Mi−1, and if we do, we add such a transplant (di, pi) as well.

Therefore, |PMi
1 | ≥ |P

Mi−1

1 |. Thus, |PMk
1 | ≥ |PM0

1 | = |P M̃1 | > |P
S(G)
1 |. Furthermore,

all patients matched at distance 1 by S(G) are also matched at distance 1 by Mk,

so P
S(G)
1 ⊆ PMk

1 , and since also |P S(G)
1 | < |PMk

1 |, then P
S(G)
1 ⊂ PMk

1 . Therefore,
the number of donations induced at distance 1 by S(G) is strictly less than the
number of donations induced at distance 1 by Mk. But S(G) maximizes the number
of donations induced at distance 1 by definition. Contradiction.

Theorem 6. Let G = (P,D, T,R, s) be a uniform market. Assume that s(d, p) =
α < min { 1

Λmax
, 1√

e
} for all (d, p) ∈ T . The approx. ratio of S on G is upper bounded

by max { 1
1+Λmaxα

+ Λ2
maxα

1−Λ2
maxα

2 + 2α2Λ2
max

1−α
1−Λ2

maxα
2 ,

Λmax
1−Λmaxα

(1− α)(1 + Cmaxα)}.

Proof. We use the notation from the proof of Theorem 2. Let us set

B1 = (
Λmaxα

1− Λmaxα
+ 2α2Λmax

1− α
1− Λmaxα

)β1 + αCmaxΛmax
1− α

1− Λmaxα
βCmax

+

Cmax−1∑
i=2

Λmax
1− α

1− Λmaxα
(αi + (i+ 1)αi+1)βi

and

B2 =

Cmax∑
i=1

αiβi

We have established that obj(OPT (G)) ≤ B1 and obj(S(G)) ≥ B2. Therefore,
obj(OPT (G)) ≤ |A(G)| + B1 and obj(S(G)) ≥ |A(G)| + B2, and we get the bound
obj(OPT (G))
obj(S(G)) ≤ |A(G)|+B1

|A(G)|+B2
. Since B1

B2
≥ 1 and both B1 and B2 are positive, it follows

that |A(G)|+B1

|A(G)|+B2
decreases as |A(G)| increases for |A(G)| ≥ 0. Furthermore, we know

that |A(G)| ≥ |P S(G)
1 | ≥ β1

Λmax
: the fact that each patient in P

S(G)
1 receives an

altruistic donation justifies the first inequality, and the fact that each patient in

P
S(G)
1 induces at most Λmax donations at distance 1 justifies the second inequality.

Thus, we get obj(OPT (G))
obj(S(G)) ≤

β1
Λmax

+B1

β1
Λmax

+B2

. From this point, the analysis is identical to

the non-adjusted case, with the coefficient of β1 in both the numerator and the
denominator increased by 1

Λmax
. ut

Appendix C Solving SuperGreedy’s Integer Program

While it is impractical to feed our IP for SuperGreedy into a solver directly, we can
solve it iteratively. We will specify an ordering � over T which will determine an
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ordering over 2T as discussed in Section 4. Define � as follows: for (di, pj), (di′ , pj′) ∈
T , if either j > j′ or both j = j′ and i > i′, then (di, pj) � (d′i, p

′
j).

Informally, the iterative algorithm works as follows. In iteration l, we solve two
IPs. First IP 1

l determines which patients will receive a kidney at distance l, and
then IP 2

l breaks remaining ties. The advantage of this method is that we do not

actually have to use large coefficients. IP 1
l optimizes

∑|P |
i=1 (β|p∗i |+ 2i)pi,l: only the

first power of β is involved, and it is actually sufficient to have β = |D|+2|P |, which
is significantly smaller than |D| + 2|T |. IP 2

l only needs to consider a small subset
of edges: edges from donors matched at distance l − 1 who have yet to donate (in
iteration l−1) to patients determined to match in IP 1

l , and edges in cycles including
only patients determined to match in IP 1

l . Formally, we define IP 1
l and IP 2

l , as well
as their respective solutions (pl,1, dl,1) and (pl,2, dl,2) recursively. As the base case,
d0,2i,j,0 = 1 if di is altruistic, and all other variables in d0,2 as well as all variables in

p0,2 are 0. We also define DONORS0 = A. For iterations l = 1, . . . , Lmax, do the
following:

1. To get IP 1
l , modify our original IP as follows:

(a) Set pi,l′ = 0 and dj,k,l′ = 0 for all l′ > l (and all i, j, k s.t. the variables exist).

(b) Set pi,l′ = 1 when pl−1,2i,l′ = 1 and set dj,k,l′ = 1 when dl−1,2j,k,l′ = 1 for all l′ < l
(and all i, j, k s.t. the variables exist).

(c) Set the objective function to be
∑|P |

i=1 (β|p∗i |+ 2i)pi,l.
2. Solve IP 1

l to get (pl,1, dl,1). Let the set of patients matched at distance l be

PATIENTSl = {pi : pl,1i,l = 1}.
3. To get IP 2

l , modify our original IP as follows:
(a) Set pi,l′ = 0 and dj,k,l′ = 0 for all l′ > l (and all i, j, k s.t. the variables exist).

(b) Set pi,l′ = 1 when pl,1i,l′ = 1 for all l′ ≤ l and dj,k,l′ = 1 when dl−1,2j,k,l′ = 1 for
all l′ < l (and all i, j, k s.t. the variables exist).

(c) Let CY CLESl be the set of all edges from T that are in cycles of size
l that consist entirely of patients in PATIENTSl. Let EXTENSIONl =
{(di, pj) ∈ T : di ∈ DONORSl−1, pj ∈ PATIENTSl}. DefineBl = CY CLESl∪
EXTENSIONl and let µl(d, p) = k − 1 if (d, p) is the k-th largest edge in
Bl according to �.

(d) Set the objective function to be
∑

i,j:(di,pj)∈Bl 2µl(di,pj)di,j,l

4. Solve IP 2
l to get (pl,2, dl,2).

5. Set DONORSl = ∪i:pli=1p
∗
i − {di : ∃j s.t. dli,j,l = 1} to be the set of all satisfied

donors at distance l who have not donated to a patient at distance l (that is,
who have not donated through a cycle).
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Appendix D Additional Simulation Results for the Non-Adjusted
Objective

This appendix includes the simulation results for the non-adjusted objective. We
note that Dickerson et al. [6] also simulate OPT when Λmax = 1 and α = 0.3, and
report a significantly smaller number of transplants: this is to be expected, because
they do not assume redirection of donors in indirectly-but-not-directly canceled
transplants to the waiting list (in other words, their objective function is different
than obj).

approx. ratio obj(S(G)) obj(OPT (G))

α
Λmax

1 2 3 4 1 2 3 4 1 2 3 4

0.1 1.058 1.009 1.006 1.004 2.221 2.263 2.267 2.268 2.272 2.275 2.275 2.275

0.2 1.08 1.019 1.015 1.012 3.031 3.168 3.18 3.186 3.196 3.219 3.221 3.222

0.3 1.098 1.029 1.024 1.022 4.294 4.596 4.622 4.636 4.647 4.724 4.731 4.733

Table 3: Mean simulation results for S. The mean is taken over all 52 markets.

Fig. 8: Box plot for the approximation ratio of S, showing quartiles q1-q3. Empty
circles are outliers (points outside [q1 − 1.5(q3 − q1), q3 + 1.5(q3 − q1)]).
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